The tetrahydroisoquinoline derivative SB269,652 is an allosteric antagonist at dopamine D3 and D2 receptors.
نویسندگان
چکیده
In view of the therapeutic importance of dopamine D(3) and D(2) receptors, there remains considerable interest in novel ligands. Herein, we show that the tetrahydroisoquinoline 1H-indole-2-carboxylic acid {4-[2-(cyano-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-cyclohexyl}-amide (SB269,652) behaves as an atypical, allosteric antagonist at D(3) and D(2) receptors. Accordingly, SB269,652 potently (low nanomolar range) abolished specific binding of [(3)H]nemanopride and [(3)H]spiperone to Chinese hamster ovary-transfected D(3) receptors when radioligands were used at 0.2 and 0.5 nM, respectively. However, even at high concentrations (5 μM), SB269,652 only submaximally inhibited the specific binding of these radioligands when they were employed at 10-fold higher concentrations. By analogy, although SB269,652 potently blocked D(3) receptor-mediated activation of Gα(i3) and phosphorylation of extracellular-signal-regulated kinase (ERK)1/2, when concentrations of dopamine were increased by 10-fold, from 1 μM to 10 μM, SB269,652 only submaximally inhibited dopamine-induced stimulation of Gα(i3). SB269,652 (up to 10 μM) only weakly and partially (by approximately 20-30%) inhibited radioligand binding to D(2) receptors. Likewise, SB269,652 only submaximally suppressed D(2) receptor-mediated stimulation of Gα(i3) and Gα(qi5) (detected with the aequorin assay) and phosphorylation of ERK1/2 and Akt. Furthermore, SB269,652 only partially (35%) inhibited the dopamine-induced recruitment of β-arrestin2 to D(2) receptors. Finally, Schild analysis using Gα(i3) assays, and studies of radioligand association and dissociation kinetics, supported allosteric actions of SB269,652 at D(3) and D(2) receptors.
منابع مشابه
The Tetrahydroisoquinoline Derivative SB269,652 Is an Allosteric Antagonist at Dopamine D3 and D2 Receptors □S
In view of the therapeutic importance of dopamine D3 and D2 receptors, there remains considerable interest in novel ligands. Herein, we show that the tetrahydroisoquinoline 1H-indole-2carboxylic acid {4-[2-(cyano-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]-cyclohexyl}-amide (SB269,652) behaves as an atypical, allosteric antagonist at D3 and D2 receptors. Accordingly, SB269,652 potently (low nanomola...
متن کاملInteractions between Histamine H1 and H3 and Dopamine D1 Receptors on feeding behavior in chicken
BACKGROUND: Brain monoamines (such as histamine and dopamine) play an important role in emotions, cognition, reward and feeding behavior. The interactions between histamine and dopamine were studied in many physiological functions but this correlation is unclear in feeding behavior of chickens. The aim of this study was to investigate the interaction of central histaminergic and dopaminergic sy...
متن کاملA review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)
Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...
متن کاملModulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex
Introduction: Spreading depression (SD) is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investi...
متن کاملIn Vitro and In Vivo Identification of Novel Positive Allosteric Modulators of the Human Dopamine D2 and D3 Receptor.
Agonists at dopamine D2 and D3 receptors are important therapeutic agents in the treatment of Parkinson's disease. Compared with the use of agonists, allosteric potentiators offer potential advantages such as temporal, regional, and phasic potentiation of natural signaling, and that of receptor subtype selectivity. We report the identification of a stereoselective interaction of a benzothiazol ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 78 5 شماره
صفحات -
تاریخ انتشار 2010